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Abstract: Pose estimation has evolved into a beneficial concept in autonomous systems. It refers to the techniques used by 

computers to detect and quantify certain features in an image. The present work proposes modified helipad intelligent detection 

and pose estimation, using a fusion of camera and LiDAR. The image data are first collected using Otsu thresholding through the 

downward drone camera and converted to a binary image. Next, Boundary Parametric Ellipse Fitting (BPEF) algorithm is 

employed to detect circles, which will turn into ellipses when there is a tangential distortion in an image. Then, Ellipses Region of 

Interest (EROI) is extracted from the images via the potential circles. The algorithm uses a modified version of the helipad with 

an arrow sign located outside of the helipad’s circle. The arrow’s centroid point is located on the axial line, which horizontally 

splits the word “H” and passes the word’s centroid. Hence, using the proffering over-the-line-and-between-ellipses-check 

technique, potential arrows are extracted. A Support Vector Machine (SVM) is then trained to detect the helipad over 400 images 

of the word “H” and Arrow patterns. The “H” and the Arrow corners are detected and localized in the following phase. The 

projected LiDAR data is followingly utilized to find the corners depth information. Finally, the translational and rotational pose 

components are projected to obtain the corners’ coordinates and the rigid body transformation. Software-in-the-Loop (SIL) is 

used to assess the method accurately. The experimental setup is tuned so that the drone stays motionless over the landing platform 

and conducts the pose estimation. The method was compared with the AprilTag Detection Algorithm (ATDA). A statistical Root 

Mean Square Error (RMS) is also used to gauge the accuracy of the proffered method. The analysis results confirmed a notable 

improvement in rotational and translational estimations. 
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1. Introduction 

This work covers the problem of drone landing through a 

modified version of the helipad and Artificial Intelligence 

(AI). The following sections discuss the problem statement 

and review state-of-the-art works addressing UAV landing 

approaches. 

1.1. Problem Statement 

Drone landing is one of the most challenging areas of 

research to have emerged over the past few years. It plays a 

pivotal role in today’s world. Nowadays, drones are served in 

various tasks, including goods delivery, emergency acts, 

aerial imaging, to name a few. A myriad of components and 

actions are required to control and manipulate Unmanned 

Aerial Vehicles (UAVs). The current research focuses on the 

pose estimation section of the drone control system. It refers 

to spatial distance measurement of the aerial robots for a 

fixed origin, such as a landing sites, goods to be collected 

from stores’ shelves. 

While recent works use a variety of algorithms and sensors 

to operate this computation, in this work, a new pattern for 

helipad is designed, and fused data from the LiDAR and 

camera are employed for pose estimation. Initially, images 

and ranges data are collected via the downward camera and 

LiDAR sensors. The images are then converted to binary, 
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stored in a single dimension matrix, from RGB image, 

represented by red, green, and blue matrices. Boundary 

Parametric Ellipse Fitting (PEF) technique followed by 

Ellipses Region of Interest (EROI) extraction is performed to 

eliminate unnecessary parts of the scene. The subsequent 

technique for removing redundant details from the image is 

called over-the-line-and-between-ellipses-check. This 

algorithm checks that the centroid of the arrow, located 

between the helipad ellipse and EROI, is selected. A Support 

Vector Machine (SVM) is also trained over 400 images of the 

arrow and the word “H” Region of Interest (ROI) for the 

detection of the helipad. After SVM confirms the detection, 

corners of “H” and arrows are extracted and localized. In the 

subsequent phase, the ranges data are projected to the image 

using the camera intrinsic parameters and spatial location of 

the LiDAR to the camera. The calculated corners and rigid 

body transformation estimation are finally utilized to the 

projection for the rotational and translational displacements 

of the landing platform to the drone. 

1.2. Motivations 

There are numerous downsides to the developed 

state-of-the-art pose estimations techniques, leading to the 

necessity of developing new hardware and software design. 

Monocular cameras pose estimation is deemed to be ill-posed, 

causing complications for pose estimation based on sole digital 

image processing techniques [1]. The next issue is that image 

base pose calculation relies on the scenes and the features, 

from textures and shapes; hence detection, for pose projection, 

based on a texture-less irregular object placed in a 

heavy-occlusion scene can lead to high computational cost, 

high latency, low accuracy, and even erroneous results [2]. 

Moreover, previous works used descriptors, such as SIFT and 

SURF, matching, and perspective-n-point (PnP) as critical 

components for their algorithms; however, this approach can 

only be successful, provided sufficient and appropriate 

matches are found [3]. Therefore, much research employs 

multiple sensors and algorithms to ameliorate the estimation. 

Global Positioning System (GPS) and Inertial Navigation 

System (INS) are two examples of these tools. While GPS is 

utilized in various applications, the signal is heavily reliant on 

weather conditions. It only can be used outdoor [4]. Even if 

excellent meteorological conditions exist, there are still two 

major issues of GPS signal spoofing, leading to inaccurate 

position calculation and signal jamming, which induces a high 

noise level on the sensory data. Moreover, the heaviness, 

bulkiness, and high-power consumptions are typical of Inertial 

Navigation System (INS) inclusion in design [5]. 

Some algorithms include estimation techniques to have 

multiple sensors in one design. The most well-known 

examples of these approaches are Kalman Filter (KF), 

Extended Kalman Filter (EKF), Unscented Kalman Filter 

(UKF), and Particle Filter (PF). The suitability and 

practicality of the implementation based on them depend on 

the applications' nonlinearity. KF application for the linear 

system is perfectly proper. However, the slight nonlinearity 

can be easily handled by EKF approach to the extent that 

noise statistic such as covariance matrixes of the process 

noise is accurate. UKF profoundly overcome the 

insufficiencies of the EKF in system nonlinearity. However, 

it still suffers from the fact that the rounding error and 

approximation error increase when the system's nonlinearity 

grows. PF can manipulate a more complex and nonlinear 

system; nonetheless, the accuracy of the calculations largely 

depends on the number of particles. This increase can boost 

the computations, leading to the expensive and heavy system 

design [6]. 

1.3. Contributions 

There are several contributions that the current research 

proffers, which can be listed as follows: 

1) The proposing algorithm’s first and most important 

contribution would be developing a fast circle detection 

technique based on the Boundary Parametric Ellipse 

Fitting (BPEF). 

2) Second, boosting the accuracy of altitude estimation 

during the landing compared to the sole monocular 

camera-based methods such as AprilTag. 

3) Third, the proposing method employs a low-resolution, 

low-weight LiDAR, eliminating the extra expenses of a 

powerful electrical feeding system and costly computers 

with Graphical Processing Units (GPUs). 

4) Rotational translations are corrected via a combination 

of LiDRA and image data; and 

5) Low-light-conditions-related inaccuracies can be 

compensated to a great extent through the data from the 

range sensor. 

2. Related Work 

The helipad detection problem was first addressed in 2007, 

in Nsogo et al. [7] article, after Sharp et al. [8] developed an 

algorithm for the landing of an unmanned aerial vehicle. Sharp 

proposed an algorithm that described the extraction of the 

main features such as corners, lines, and edges. That algorithm 

was inefficient, given that it was based on geometric moment 

descriptors, which were not sufficiently robust for helipad 

detection. In view of that, a novel Normalized Wavelet 

Descriptor (NWD) is proffered herein and compared to 

geometric moments and a Fourier Descriptor (FD). The NWD 

differs from the previously defined algorithm proposed by 

Sharp in several ways: with the NWD, the threshold value is 

obtained automatically for each image, edge features are used 

for the helipad, and the algorithms developed can be used for 

most types of landing targets, not just helipads. In 2009, a 

feature-based single-camera vision system for the safe landing 

of an unmanned aerial vehicle (UAV) was proposed [9]. This 

approach was based on the analysis of optical flow and of the 

mutual geometric position of different kinds of features, 

observed from different points of view. Later that year, a more 

robust algorithm was introduced in [10]. Zeng Fucen focused 

on object recognition and adaptive threshold selection in the 

vision system to make the algorithm more robust. A few years 

later, in 2012, another vision-based landing system was 
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proposed, in the study of Lange et al. [11], to deal with the 

high cost and complexity of the Ground Controlled Approach 

(GCA) and Instrument Landing System (ILS) [12]. It proposes 

a real-time detection method, which aims to grant UAVs the 

ability to land, by recognizing the international standard 

helipad pattern (circle sur-rounding an H). Previous 

algorithms did not take into consideration image blur, 

irrespective of whether it was caused by weather conditions or 

by a foreign material covering the vision camera lens. This 

issue was addressed a few years later in 2016 in Zeng et al. [13] 

work. Their strategy for unblurring the image was to use the 

Weiner Filter. A monocular vision-based real-time target 

recognition was proposed by Lin [14]. In it, the helipad 

contours are used to perform point feature mapping and 

clustering. The algorithm can recognize the international 

landing target in a cluttered environment, by the four degree of 

freedom pose of the drone with respect to the helipad. Later 

that year, Cosimo conducted another helipad detection 

algorithm for accurate UAV pose estimation through a visual 

sensor [15]. Pose estimation has proven to be effective in 

many fields, but it stands out particularly in self-driving 

vehicles. The core component of a self-driving car is its ability 

to detect, identify, and process what its visual sensors perceive. 

Engaging these pose estimation techniques, these smart 

vehicles should be able to assess the difference between a 

person walking, running, or on a bicycle, and use this 

information accordingly. The main contribution of this work is 

its simplification of the process, allowing implementation and 

precise pose estimation. 

3. Proposing Intelligent Helipad and 

LiDAR Camera Fusion (IHLCF) 

A standard helipad is only composed of a circle, and the 

word “H” is located in the middle of the circle. However, the 

modified version of the helipad includes an arrow for better 

heading detection. While the symmetry of the standard 

helipad proposes no headings, the modified version only 

includes a single direction for heading. Figures 1(a) and 1(b) 

demonstrate a standard helipad pattern with no heading and 

modified versions. 

 

Figure 1. Standard helipad (a), proposing helipad. 

IHLCF is a method for the modified version of the helipad's 

pose estimation, comprising preprocessing, detection, data 

fusion, and estimation. Figure 2 depicts the complete 

overview of the algorithm. 

 

Figure 2. Intelligent Detection and LiDAR Camera Fusion (IHLCF) overview. 
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3.1. Preprocessing 

Preprocessing step is essential in advance of the detection 

step to extract the required features for the detection part. 

3.1.1. Otsu Binarization 

Acquired Images are presented in RGB format with three 

matrices for red, green, and blue colors’ intensities. To 

binarize an image, first, it is essential to convert the image 

from RGB to grayscale. 

3.1.2. Boundary Parametric Ellipse Fitting (BPEF) 

In this phase, the circle of the scene is extracted. To 

implement BPEF, first, Euler number filtering is used to 

ensure that the hole in blobs is zero and one. Also, the suitable 

blob area for the current algorithm is taken between 30 and 

60,000. Next, the boundaries of the binary blobs in the image 

are extracted. In the next phase of the calculation, the 

parametric equation of the rotated ellipse is considered as 

equation (1). 

����������	�
����
�����	���
��
� �� � ��������	���
����
�������	�
��
� �� � 1                      (1) 

The equation is converted to the optimization problem to validate the ellipse boundary. The parametric ellipse equation is 

defined as equation (1). Nonlinear least square is used to project the equation (2). 

�ellipse���, ��, ��� � ����������	�
����
�����	���
��
� �� � ��������	���
����
�������	�
��
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�ellipse���, ��, ���               (3) 

where ��is before-rotation ellipse axis in v direction, �� is 

before-rotation ellipse axis in u direction, and �� is the angle 

of rotation. �� and �� are the ellipse centroid coordinate 

address. The nonlinear least square method is used to solve 

Equation (3). Figure 3 depicts the ellipse plot and the 

concerning parameters. 

 

Figure 3. Ellipse plot and parameters for parametric ellipse fitting. 

3.1.3. Ellipses Region of Interest (EROI) Extraction 

To calculate the EROI two parameters namely, shrinkage 

factor (�) and number of sample points (�	�) are considered. 

Equations (19)-(24) deliberates on finding EROI. 

� !"#$ � �1 � �� � %&'$ � &�( � &�        (4) 

)� !"#$ � *�+,-.�/ 0 , 1 1 2 !"# 1 )34&�	� 1 26 1 )34 (5) 

37 � 389:;�)3�<=�               (6) 

)�>?6@ � )AB�)� !"#$ , 1�            (7) 

CDEF>?6@ � GEHI�)�>?6@�          (8) 

CDEF � CDEF>?6@ ⊙E2KL          (9) 

37 , )3�<= , )� !"#$ , )�>?6@ , CDEF>?6@ , E2KL , and

EROI  are a zero mask, original image size, sampled points 

boundary for CDEF, sample points mask by substituting one 

in zero mask, mask for CDEF, the original image, and the 

image with Ellipses Region of Interest, respectively. Also, ⊙ 

is Hadamard product notation, GEHI is convex hull notation, 

    is rounding notation, and SUB  is pixel substitution. 

3.1.4. Over-the-Line-and-Between-Ellipses-Check (OLBEC) 

This is an essential step to make certain that the centroid of 

the potential arrow point is located over the axis developed by 

the current technique. OLBEC concept is depicted in the 

Figure 4. 

 

Figure 4. OLBEC presentation. 

To calculate the equation of the line represented by orange 

in Figure 4, the algorithm undergoes below procedures: 

1. logical negation of the labeled blob of the word “H”; 

2. Extraction of two centroids from the negated blob; and 

3. Using the two points found in 2 and the word “H” 

centroid to find the orange line equation: least square 

algorithm is employed to find the line equation. 

Above procedures makes sure that the arrow is located on 
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the helipad OLBEC line. 

Each point on the u-v plane has three statuses, namely, out 

of the ellipse, inside the ellipse, and on the ellipse. Following 

two Equations (10) - (12) determine each centroid location. 

�ellipse�M, N, ��� O 0            (10) 

�ellipse�M, N, ��� Q 0            (11) 

�ellipse�M, N, ��� � 0            (12) 

The whole centroids are checked to confirm the primary 

helipad detection. From all centroids in the scene, only two 

must satisfy equation (10) because circle and letter “H” 

centroids are inside the ellipse. At least one centroid must 

satisfy the equation (11) since the arrow centroid is outside the 

ellipse. Points that are accepted in Equation (12) are located 

on the boundary of the ellipse. These Equations also guarantee 

that the arrow centroid is located between ellipses, namely 

EROI and the helipad ellipse. 

3.1.5. Rotate Toward the Training Axis 

It is essential to rotate the helipad binary image toward a 

fixed axis to have a stable feature. Here training axis is 

formed by the helipad circle centroid and the same point with 

zero v; hence training axis is variable but parallel to the v 

axis of the image plane. Figure 5 depicts the training axis in 

the image plane. 

In the final step, the image is rotated with the angle of �RS?. RS? is the angle between helipad axis and training 

axis, represented by green line and blue line in Figure 5 

respectively. 

 

Figure 5. Training axis, in blue line, and helipad axis, in green line. 

3.1.6. Feature Extraction 

In this phase of the methodology following arrow and the 

word “H” are extracted from the image and resized to one 

sixth of the original image. Figure 6 shows this rescaling. 

 

Figure 6. Rotated and rescaled version of the H and the arrow presented in (a) 

and (b) respectively. 

The feature vector is the extracted from the H and potential 

arrows. These features are represented in a vector format in 

Equation (13). 

T
U�V � �T W, T6�X , T , T Y�       (13) 

T
U�V , T W,	T6�X, T , T Y are are the training feature vector, 

equivalent diameter, solidity, extent, and eccentricity, 

respectively. 

3.2. Detection 

This part explores the procedures for the detection of the 

modified helipad. The classifier must be trained once; then, it 

can be used for detection. Support Vector Machine is used as 

a detector. The data were trained over 200 images of the 

arrow and 200 images of the word “H” and tested with 200 

different images. The test of the trained SVM model issued 

100% of accuracy for the binary classification of the word” 

H” and the arrow images, with one sixth size of the original 

image. 

3.3. Data Fusion 

This section elaborates on procedures for combining data 

from the camera and LiDAR. The data fusion phase follows 

three steps as below. 

1. “H” and arrow corner detection; 

2. LiDAR to Camera Projection; and 

3. Corners’ world coordinate calculation. 

In the first step, the Harris corner detection algorithm and 

is employed to localize the H and arrow blobs in the image 

plane. By a sliding window and image gradient, the 

Harris-based corners are detected. Since the camera and 

LiDAR are in the real world, the rigid body transformation is 

required for the projection calculation. Hence, in the next 

step, LiDAR to camera projection is conducted. Equations 

(14) and (15) deliberates the procedures for calculating the 

projection. 

�[Y � �[ � D[Y � \[Y            (14) 

&&[Y � G � �[Y             (15) 

where D[Y , \[Y , �[Y , &&[Y  and G are rotation matrix of 

LiDAR to the camera, translation matrix of LiDAR to the 

camera, point clouds of LiDAR in the camera frame, projected 

point clouds in image frame, and camera matrix respectively. D[Y and \[Y  are related to the system's design and are taken 

as Equations (16) and (17). 
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D[Y � ]�1 0 00 −1 00 0 1^             (16) 

\[Y = �−0.15 0.05 0.16�         (17) 

In the final part of the data fusion, part 3, the nearest 

neighbor method finds the nearest projected points &&[Y  to 

the helipad corners to find the helipad corners’ world 

coordinates. 

3.4. Rigid Body Transformation Estimation 

Corner points’ real-world coordinates are taken as the 

second point sets to calculate the rigid body transformation. 

Then real corners’ measurements of the modified helipad 

(modified helipad dimensions) are the first points sets. The 

estimation algorithm calculates the transformation between 

these two sets of points. Rigid body transformation is 

estimated by these two sets of points and the Singular Value 

Decomposition Algorithm (SVD) technique. 

4. Empirical Setup 

The research is conducted in the Software-in-the-Loop 

(SIL). CoppeliaSim API framework transfers image and 

LiDAR data from the simulator to MATLAB in real-time. 

The simulation time step is selected as the default timing, 50 

ms. Figure 7 depicts the interaction between MATLAB and 

CoppeliaSim environment in real-time. 

In addition, there are five primary coordinate frames in the 

simulation environments. Figure 8 shows these frames. The 

first frame is the world coordinate, and the rest of the frames 

are calculated relative to this system. While the second frame 

is the drone frame, the same as the camera frame, and the 

third system belongs to the helipad. The fourth system is 

pixel frame, with coordinates of u and v. Finally, the fifth 

system is for LiDAR, which has bX  and y	directions. 

 

Figure 7. SIL interaction between MATLAB and CoppeliaSim details. 

 

Figure 8. Employed coordinates system in the simulation. 

 

Figure 9. The camera (a) and the LiDAR (b) settings. 
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Figure 10. Drone sensor installations and arrangements. 

The sensor’s parameters settings are illustrated in Figure 9. 

Figure 9(a) belongs to the camera parameters, while Figure 

9(b) is for the LiDAR settings. 

This experiment has two primary sensors, including a camera 

and LiDAR, with the layout demonstrated in Figure 10. 

5. Results and Discussion 

The IHLCF is compared with ATDA for translational and 

rotational components to evaluate the algorithm’s viability. 

Figure 11 illustrates the translational calculations and ground 

truth. It is apparent from the figure that the LiDAR range 

data significantly ameliorates the translational components in 

the X, Y, and Z directions. The most notable error is in the Z 

– coordinate of ATDA during all simulation periods 

disregarding the initial results. The following highest 

displacement estimation error is for ATDA in the Y-direction. 

However, the X-direction shows a lower error than the other 

ATDA translational estimations. 

 

Figure 11. Translational estimation for GT (green), ATDA (blue), and IHLCF (red) – For Z, Y, and Z. 

 

Figure 12. Translational estimation for GT (green), ATDA (blue), and IHLCF (red) - translational estimation for GT (green), ATDA (blue), and IHLCF (red) – 

For pitch, roll, and yaw. 



23 Mohammad Sefidgar and Rene Jr. Landry:  Helipad Pose Estimation Using Intelligent  

Helipad and LiDAR Camera Fusion (IHLCF) 

 

Figure 13. Trajectory (3D) plot for GT (green), ATDA (blue), and IHLCF (red). 

Next, IHLCF is tested for rotational angles, presented in Euler 

angles, estimations. Figure 12 demonstrates the rotational 

estimation results. While the IHLCF algorithm proves feasible 

in translational estimation, it slightly fluctuations over the GT 

for Euler angles estimation. ATDA demonstrates remarkable 

error during all periods in pitch estimation, although it proposed 

a better roll tracking. In addition, the highest yaw estimation 

error is for ATDA at 380 seconds of simulation. 

The trajectory plot of GT, ATDA, and IHLCF is 

demonstrated in Figure 13. It is transparent from the plot that 

IHLCF proposed a better trajectory tracking. ATDA 

demonstrates a considerable inaccuracy for altitude 

estimation, confirming the suitability of the LiDAR range 

data inclusion for translational estimations correction. 

Equation (18) describes the Mean Absolute Errors (MAEs) 

calculation over the simulation period. 

MAEs � ∑ |jk�jlk|kmknk�� � ∑ |Uk|kmknk��        (18) 

oV  is the correct value, olV is the estimated value, and 8V 
is the error at the time “t”. The mean absolute errors (MAEs) 

of the proposing IHLC and ATDA are summarized and 

compared in Table 1. 

Table 1. Summary of IHLCF and ATDA MAEs. 

Name 
Error 

Translational absolute error (m) (X, Y, Z) Rotational absolute error (rad) (pitch, roll, yaw) 

ATDA 0.0210, 0.0168, 0.1027 0.0708, 0.0357, 0.0271 

IHLCF 0.0033, 0.0037, 0.0039 0.0162, 0.0228, 0.0196 

 

From Table 1, MAEs errors are negligible compared to the 

ATDA algorithm. This is because the low-angle, low-density 

LiDAR provides range data which is beneficial to the 

correction of the pose estimation inaccuracies. These 

improvements are more prominent in the translational pose 

estimation. While low-angle, low-density LiDAR is less 

expensive and light-weight, it is a suitable sensor for 

camera-based sensor fusion for landing system design.  

6. Conclusions and Future Works 

In this work, the helipad pose estimation problem was 

addressed via modifying an arrow for heading estimation and 

including LiDAR range data. The main inspiration behind this 

research is to develop a system for aerial vehicles that can 

estimate the landing surface attitude and position. The 

application of the method would be beneficial, especially for 

rotary aerial vehicles’ emergency landing in challenging 

situations such as marine environments. After the image data 

acquisition, the algorithm converts the image from RGB to 

grayscale and binary images. Then, developed State of the Art 

(SOTA) BPEF is used to extract the circles from the scene. 

Next, two measures, including EROI, 

over-the-line-check-and-between-ellipses-check, are taken to 

eliminate unnecessary candidates’ binary blobs. In the 

following stage, the helipad binary pattern is rotated. Also, 

relevant features, namely, equivalent diameter, solidity, extent, 

and eccentricity, are extracted from the blobs. Next, the 

detection is conducted utilizing SVM. The H and arrow 

corners are extracted and localized if the helipad is detected. In 

the following step, the data from the LiDAR are projected into 

the image plane. Then, the nearest projected point clouds 

points toward the H and arrow corners are found via nearest 

neighbor search in Cartesian coordinates of the camera frame. 

In the final stage, the pose of the helipad is estimated through 

the SVD algorithm. The empirical findings support a 
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noticeable improvement in the pose estimation by modifying 

the helipad and integrating a LiDAR sensor. In addition, in this 

study, we used a low density, low angle LiDAR, which 

substantially reduces the computational and cost expenses 

compared to when high density, high angle LiDAR is utilized. 

There are several propositions for future works. First, in 

this work, the IHLCF method is trained over the image with 

lower computation; however, we also recommend training 

deep learning or machine learning model on 3D LiDAR data 

and fusing the model with image data. In this manner, 

problems of camera calibration inaccuracies are rectified. 

Next, the outstanding potential of Artificial Intelligence (AI) 

in many areas has been confirmed over the most recent 

research, and complex landing system development is not an 

exception. 

Reinforcement learning is one of these methods that use an 

agent, which behaves like a human that gains experience in 

an environment, representing the world. This experience 

acquisition process is how the agent interacts with the 

environment and obtains acting knowledge through being 

rewarded or penalized. In addition, a State of the Art (SOTA) 

technique based on the imitation learning method can also be 

used for the landing task learning. In this type of learning, a 

human supervisor teaches the robots to conduct a task. 
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